
white paper

This technical paper presents recent trends in the develop-
ment of safety-critical avionics systems. It discusses the
emergence of Integrated Modular Avionics (IMA) architec-
tures and standards and the resulting impact on the develop-
ment of a commercial off-the-shelf (COTS) RTOS that is
standards-compliant.

Introduction

Many avionics systems have been successfully developed
using custom hardware and software. However, in recent
years, the full life-cycle costs of customized systems have
forced original equipment manufacturers (OEMs) to consider
the use of COTS-based systems. At the same time, there has
been a noticeable migration away from federated architec-
tures, where each individual subsystem performs a dedicated
function toward generic computing platforms that can be
used in multiple types of applications and, in some cases, run
multiple applications concurrently. This approach, known as
Integrated Modular Avionics (IMA), results in fewer subsys-
tems, reduced weight, less power consumption, and less
platform redundancy. A number of civil and military research
programs have sought to define IMA architectures, and while
they differ in their approaches, they share the same high-
level objectives:

Common processing subsystems:•	 These should allow
multiple applications to share and reuse the same
computing resources. This results in a reduced number
of subsystems that need to be deployed and more
efficient use of system resources, leaving space for
future expansion.

Software abstraction:•	 This should isolate the application
not only from the underlying bus architecture but also
from the underlying hardware architecture. This
enhances portability of applications between different
platforms and also enables the introduction of new
hardware to replace obsolete architectures.

Maximize reuse:•	 An IMA architecture should allow for
reuse of legacy code. This reduces development time
while affording the developer a method of redeploying
existing applications without extensive modifications.

Cost of change:•	 An IMA architecture should reduce the
cost of change since it facilitates reuse and lowers retest
costs because it simplifies the impact analysis by
decoupling the constituent pieces of the platform that
execute on the same processor.

Table of Contents

Introduction .. 1

Application Development with Wind River’s
VxWorks 653 Platform .. 2

 Spatial Partitioning ... 2

 Temporal Partitioning ... 4

Priority Inversion, Priority Inheritance, and
Priority Ceilings .. 5

ARINC 653 Application Development 5

Heterogeneous Application Support 6

System Configuration ... 6

Health Monitoring System and Restarts............................. 7

Tools for Safety-Critical Systems Development 8

Security Considerations for Networked IMA
Systems .. 8

Safety Considerations for IMA Systems 9

Summary ... 10

References .. 10

About the Authors .. 10

About Wind River ... 10

Safety-Critical Software Development for
Integrated Modular Avionics
Paul Parkinson
Senior Systems Architect, Wind River

Larry Kinnan
Senior Engineering Specialist, Aerospace & Defense, Wind River

2 | Safety-Critical Software Development for Integrated Modular Avionics

IMA also facilitates support for applications that have
ever-increasing levels of functionality, including the interac-
tions between complex applications, such as head-up
displays, map display systems, and weather radar displays.

Although a number of IMA architectures and standards has
emerged, the ACR Specification1 and ARINC Specification
6532 appear to have the widest adoption in the avionics
community. The ACR Specification addresses architectural
considerations, whereas ARINC Specification 653 defines at a
high level an instance of a software implementation for an
IMA architecture. These and other IMA standards place new
demands on the software architecture, especially the RTOS
implementation provided by the COTS supplier. Wind River
has specifically addressed these needs by developing the
VxWorks 653 Platform3, which is being employed by the C-130
Avionics Modernization Program and 767 Tanker4. Boeing has
chosen to use Wind River’s VxWorks 653 Platform for the
development of the Boeing 787 Dreamliner Common Core
System (CCS)5. Other Wind River customers, including EADS6,
are using the platform to develop avionics systems and
safety-critical applications.

The following sections consider the technical requirements
for an integrated device software platform to support IMA
applications and show how VxWorks 653 Platform (see Figure
1), fulfils these requirements—in particular within the context
of ARINC 653 application development.

Application Development with Wind River’s
VxWorks 653 Platform

The ACR Specification defines two important concepts
widely used in IMA: spatial partitioning and temporal
partitioning.

Spatial Partitioning

Spatial partitioning defines the isolation requirements for
multiple applications running concurrently on the same
computing platform, also known as a module. In this model,
applications running in an IMA partition must not be able to
deprive each other of shared application resources or those
provided by the RTOS kernel. This is most often achieved
through the use of different virtual memory contexts en-
forced by the processor’s memory management unit (MMU).

Workbench
Development Suite

Eclipse Framework

Editor Compiler System Viewer

Port Monitor CPU Monitor Qualified Partition

Project Debugger

Verocel
Certification Services

AdaCore GNAT Pro
Ada Compiler

Interpeak
Certifiable Stack

DO178B Level A Certification Material

ARINC 653 API VxWorks API POSIX API

COIL MPOS

VxWorks 653

Virtutech Simulation Environment

COTS Boards, Semiconductor Architectures

Training and Installation Platform Customization

System Design Hardware/Software Integration Design Services

Software Partners

Run-Time
Components

Hardware Partners

Training and
Professional Services

Figure 1: Wind River’s VxWorks 653 Platform

3 | Safety-Critical Software Development for Integrated Modular Avionics

These contexts are referred to as partitions in ARINC 653.
Each partition contains an application with its own heap for
dynamic memory allocation and a stack for the application’s
processes (the ARINC 653 term for a context of execution).
These requirements affect the design and implementation of
the RTOS kernel and language run-time system. For example,
VxWorks 5.5 uses a shared virtual address space for applica-
tions and provides basic support through the MMU to
prevent accidental or malicious access to program code by
errant applications, without incurring the performance
overhead of a full process model. VxWorks 6.x and VxWorks
653 provide an environment that uses the MMU to enforce
separate contexts.

However, in an IMA environment, memory protection alone
would not prevent an errant application running in a partition
from consuming system resources, which might have a
detrimental effect on an application running in another
partition. This can have serious consequences where multiple
applications of differing levels of criticality are running on the
same processor. This problem cannot be resolved through
the use of a full process model alone; instead it requires the
development of an RTOS that specifically addresses the
needs of IMA. The VxWorks 653 operating system was
designed specifically for this purpose and supports the
ARINC 653 model in the implementation of the kernel
architecture (see Figure 2).

The •	 module OS interacts directly with the computing
platform (core module), providing global resource
management, scheduling, and health monitoring for
each of the partitions. It also uses a board support
package (BSP), the hardware-specific configuration
required to run on different processors and hardware
configurations.

The •	 partition OS is implemented using the VxWorks
microkernel and provides scheduling and resource
management within a partition. Communication with the
module OS occurs through a private message-passing
interface to ensure robustness. The partition OS also
provides the ARINC 653 APEX (application/executive)
interfaces for use by applications.

This architecture, which represents the virtual machine
approach as described in “Partitioning in Avionics Architec-
tures: Requirements, Mechanisms and Assurance”7, provides
a means of fulfilling the requirements of ARINC 653, while
providing a flexible, extensible framework not easily achieved
with a monolithic kernel implementation or UNIX-like
implementations. Within the framework, individual partitions
are implemented using memory-protected containers into
which processes, objects, and resources can be placed, with
partitioning enforced by the MMU (virtual machines). Each
partition has its own stack and local heap, which cannot be
usurped by applications running in other partitions. The
partitions also prevent interference from errant memory
accesses by applications running in other partitions.

Figure 2 shows the conceptual implementation of the
VxWorks 653 architecture. The RTOS features the ability to
have a single, shared partition OS library (shared read-only
text) in order to simplify configuration, testing, and certifica-
tion; it can also have separate, distinct configurations of the
partition OS for one or more partitions (referred to as MPOS,
or multiple partition operating system).

App 1

Partition OS

App 2

Partition OS

App 3

Partition OS

App 4

Partition OS

Module OS

Processor

ARINC Ports ARINC Scheduler

Figure 2: VxWorks 653 RTOS Architecture

4 | Safety-Critical Software Development for Integrated Modular Avionics

Temporal Partitioning

Temporal partitioning defines the isolation requirements for
multiple applications running concurrently on the same
computing platform. This ensures that one application may
not utilize the processor for longer than intended to the
detriment of the other applications. ARINC 653 addresses the
problem by defining an implementation that uses partition-
based scheduling. A partition is scheduled for a time slot of
defined width, and other partitions may be allocated time
slots of similar or differing durations. Within a time slot, a
partition may use its own scheduling policy, but at the end of
the time slot, the ARINC scheduler forces a context switch to
the next partition in the schedule. This model is sufficiently
flexible to enable existing federated applications or new IMA
applications developed in isolation to be hosted on a core
module. However, partition scheduling and verifying that
boundaries and schedules are not violated, and taking
appropriate corrective action, inevitably create additional
complexity.

In VxWorks 653, the module OS performs ARINC 653 schedul-
ing of the individual partitions. Within each time slot, the
partition OS uses the VxWorks scheduler to perform preemp-
tive, priority-based scheduling (see Figure 3). This means that
all process level scheduling occurs within the partition space,
enabling greater scalability and stability (minimal jitter) in the

system even at high system clock rates (clock rates greater
than 1 millisecond). It also fully implements the priority-ceil-
ing protocol to prevent unbounded priority inversion (see the
next section, “Priority Inversion, Priority Inheritance, and
Priority Ceilings”).

The implementation of VxWorks 653 is fully compliant with
ARINC 653 Supplement 2, Part 1 (653-2).8 It also supports
optional mode-based scheduling, where up to 16 schedules
can be predefined and used for different modes of flight or
for staged initialization. Transitions between modes are
achieved through a restricted API call, arincSchedSet(),
and may be performed at the next major frame, next partition
window, or next timer-tick boundary. The health monitoring
system (HMS) validates the new schedule before being
adopted (this is discussed later in the section “Health
Monitoring System and Restarts”).

ARINC 653 provides a highly deterministic scheduling
methodology that may not be suitable for some applications,
as it can lead to excess partition idle time or high clock-tick
rates to insure high-rate sampling of data. To accommodate
these types of applications, VxWorks 653 provides an option
for priority preemptive scheduling (PPS) of partitions. This
method permits slack stealing by allowing designated
partitions to consume what would otherwise be idle time in
the defined ARINC schedule.

Partition 1 Partition 2 Partition 3 Partition 1

Process 1

Process 2

Process 3

Process 1

Process 4

Prio
rity

Minor Frame

Major Frame

Time

Figure 3: VxWorks 653 Temporal Partitioning

5 | Safety-Critical Software Development for Integrated Modular Avionics

Priority Inversion, Priority Inheritance, and
Priority Ceilings

Priority inversion is a concern for device software designers.
It occurs when a high-priority task is unable to run because a
mutex (or binary semaphore) it wants to acquire is held by a
low-priority task, which in turn is prevented from running by a
medium-priority task (see Figure 4).

This problem is overcome in many RTOS implementations by
the implementation of the priority inheritance protocol. This
scheme associates a priority with each mutex, and the
priority of a task holding the mutex is raised to the priority of
the highest task requesting the mutex, as shown in Figure 5.
Rate monotonic analysis (RMA) is supported when using
priority inheritance or priority ceiling protocol, but additional
analysis to determine worst-case execution time may be
required when using priority inheritance because of possible
chained blocking conditions.

The priority ceiling protocol is an alternative method used
primarily to prevent chained blocking. Here, the mutex is
initialized with a priority higher than any of the tasks that may
acquire the mutex. When a task locks on this mutex, it is
elevated to the priority ceiling (see Figure 6). While some
RTOS vendors have used proprietary implementations for the
priority ceiling protocol, Wind River uses the POSIX imple-
mentation9 because it is an internationally recognized
standard that enables legacy applications to be easily ported
to IMA platforms running VxWorks 653 (see the section
“Heterogeneous Application Support”).

There is also a requirement to ensure that applications do not
interfere with each other through use of kernel processing on
behalf of the application. In ARINC 653, this is prevented
through the use of a sophisticated model. Here, a partition
layer is responsible for servicing APEX calls, and only those
that require interaction with the module layer are passed
over. The time spent servicing the kernel calls is scheduled as
part of the partition, which prevents the application from
stealing time from other partitions.

Wind River’s VxWorks 653 extends this concept by providing
the systems integrator at compile time with the ability to limit
the number of concurrent blocking APEX calls. This is done
through the static configuration of the number of kernel
worker threads. (A worker thread performs kernel operations
on behalf of an ARINC process making an APEX call). When
all of the worker threads are busy servicing kernel API calls,
the next APEX call requiring kernel interaction will result in
the API call blocking until a worker thread becomes available.
This is enforced by configuration data that defines allowable
operations and resources on a partition basis. The configura-
tion data is separate from the partition and its application, so
changes can be isolated and rebuilt without altering the
partition application itself. This significantly reduces the cost
of change.

ARINC 653 Application Development

The ARINC 653 APEX, sometimes referred to as the ARINC
653 API, provides a general-purpose interface between the
operating system and the application software. The ARINC
653 API also provides an abstraction layer that hides the
implementation details of a particular ARINC 653–compliant
RTOS from the application and the underlying architecture of
the core module. This facilitates porting of the application to
other ARINC 653 platforms, an important consideration for
safety-critical IMA systems such as the flight computer, which
requires dual-redundant or even, in the case of the Boeing
777, triple-redundant systems10.

The ARINC 653 APEX also provides a model of static system
configuration and initialization. Here, the number of ARINC
processes is known ahead of time, and they are created in the
partition through startup code using the CREATE_PROCESS()
API. All other partition objects are created from the partition
heap, and once this has been done, the partition is activated

Figure 4: Priority Inversion Example

Figure 5: Priority Inheritance Example

Figure 6: Priority Ceiling Example

6 | Safety-Critical Software Development for Integrated Modular Avionics

through a call to SET_PARTITION_MODE(NORMAL). At this
point, the partition OS scheduler is activated and schedules
the processes within the partition. Once the application has
started, no further objects or processes may be created
dynamically. This ensures a controlled, deterministic startup
sequence for safety-critical applications and deterministic,
fixed usage of resources.

ARINC 653 also provides excellent constructs for both
intrapartition and interpartition communication. ARINC 653
blackboards and buffers assist with intrapartition communi-
cation. Blackboards provide a convenient write-once/
read-many mechanism; buffers provide the ability to send
and receive messages that are always stored in FIFO order
but permit the receiving process to receive them in either
FIFO or priority order. Additionally, semaphores and events
can be used for synchronization.

ARINC 653 ports facilitate interpartition communication. The
same naming scheme can be used for ports resident on the
same processor or on another core module in the same IMA
cabinet or in another IMA cabinet. This prevents applications
from making architecture-dependent and/or configuration-
dependent assumptions, aids portability, and eases recon-
figuration by the systems integrator. The ARINC 653 ports
facility provided by VxWorks 653 also allows the definition
and use of a pseudoport, whereby an ARINC sampling or
queuing port is connected to a module OS device driver to
achieve intermodule communications while presenting a
standard ARINC API to the application.

Heterogeneous Application Support

Although many IMA applications are developed from scratch,
there is a wealth of existing applications on federated
systems. These applications may be developed in different
programming languages and use different scheduling models
but may still need to communicate with each other in an IMA
environment.

Wind River has addressed this need by providing support for
heterogeneous applications running within individual ARINC
partitions. This enables an Ada 95 application using the
Ravenscar restricted-tasking profile to run on top of the
VxWorks 653 partition OS (this is discussed at length by
Parkinson & Gasperoni11). POSIX-compliant applications can
run in a partition in a similar way, and communication
between these applications can be implemented using
ARINC 653 ports (see Figure 7).

System Configuration

The ARINC 653 architecture guarantees resource availability
through the use of system and partition configuration records
(also known as system blueprints in the IMA community).
Their purpose is to enable the configuration of IMA applica-
tions developed by one or more OEMs onto a shared IMA
platform that is configured by the systems integrator. The
partition configuration records define the characteristics of
each OEM application in terms of memory requirements,
processor requirements, and ARINC port utilization. The
system configuration record defines the capabilities and
capacities of the IMA platform and references and validates
individual partition configuration records. This scheme
enables the systems integrator to ensure that the demands

ARINC
Application

Partition OS

POSIX
Application

Partition OS

Ada
Application

Partition OS

VxWorks
Application

Partition OS

Module OS

Processor

ARINC Ports ARINC Scheduler

APEX POSIX API Ravenscar VxWorks API

Figure 7: VxWorks 653 Heterogeneous Application Support

7 | Safety-Critical Software Development for Integrated Modular Avionics

of the applications are consistent with the performance of
the platform and that individual applications do not exceed
their allocated resources.

The current revision of ARINC Specification 653 provides only
a high-level definition of the structure and content of the
configuration records and leaves the implementation up to
the RTOS implementer, although a sample XML-based
configuration is presented. VxWorks 653 uses the following
process:

Step 1. At system initialization, the boot code loads the
module OS and system and partition configuration
records.

Step 2. The module OS initializes itself, starting its own
subsystems.

Step 3. The module OS loads the application partitions and
their applications.

This process decouples the configuration of the module OS
binary image and the system and partition configuration
records binary image from the partition applications. In this
way, individual applications and subsystems can be devel-
oped separately then integrated easily on the target file
system. Individual partition applications can also be upgrad-
ed in a straightforward manner without requiring changes to
the module OS configuration. This results in significantly less
recertification effort and greater flexibility for OEMs and
systems integrators.

VxWorks 653 has extended the sample XML-based configura-
tion to provide application developers, platform providers,
and systems integrators with a complete and qualified
toolset, coupled with data files to configure and initialize an
IMA platform. This process, referred to as independent build
link and load (IBLL), reduces the cost of change while
providing a fully configurable run-time environment. The
process also fully realizes the goals as stated in DO-297,
Integrated Modular Avionics (IMA) Development Guidance
and Certification Considerations12.

System and partition configurations can be changed without
rebuilding the entire application or platform, which signifi-
cantly reduces the impact-analysis burden for the system
integrator when upgrading and modifying an existing system.
Since the tools used to generate the configuration records in
VxWorks 653 generate binary data directly from the XML
configuration data, the tool is much simpler to use, and
therefore more easily qualified than other implementations.
Those often rely on more general-purpose mechanisms, such
as a C compiler, to generate the binary configuration data for
use by the system.

Health Monitoring System and Restarts

ARINC 653 defines the concept of a health monitor (HM)
within an IMA system. The HM is responsible for “monitoring
hardware, application, and operating system faults and
failures,” and it is the role of the HM to help “isolate faults
and to prevent failures from propagating.” Though the
concept may appear straightforward, it is actually complex,
requiring a sophisticated systemwide health monitor to track
errors and perform reconfiguration and recovery. The
response to an individual fault depends on the nature of the
fault, its severity, and the error management policy defined
by the systems integrator.

The VxWorks 653 HMS is a sophisticated framework that acts
as an intrinsic part of the VxWorks 653 architecture. It fulfils
all of the requirements of ARINC 653 and provides extensions
relevant to systems integrators intending to use dynamic
reconfiguration (in particular, mode-based scheduling). The
design and implementation of the VxWorks 653 HMS is
sufficiently rich that only an overview can be provided here.

The HMS architecture consists of systemwide HM server and
HM agents (called process-level handlers in ARINC 653)
residing in individual partitions, and the architecture also
includes support for the module OS. The HMS processes
events occurring in the system that need attention; these are
known as faults, though they may represent either a negative
or a positive event, such as a hardware exception or crossed
threshold (a fault is represented in software by an alarm). The
framework also supports messages, another type of event
used for logging or other behavior configured by the systems
integrator. Note that HMS use is not bound only to the ARINC
support in VxWorks 653, giving added flexibility to the
application developer.

The framework provides the ability to perform health
monitoring at three levels—process HM, partition HM, and
core module HM—through three types of services: alarm
detection, alarm logging, and alarm response. The partition
HM and module HM are table-driven and provide a mapping
between a code and an appropriate handler. To aid portabil-
ity, the framework uses ARINC 653 definitions for error codes,
including events such as missed deadline, numeric error,
illegal request, and power fail. XML-based configuration data
is used to configure the framework and create the table-driv-
en mapping for run-time usage by the system. Alarm re-
sponse depends on the error level: module-level responses
include reset or shutdown; partition-level responses include
the restart of a partition.

At partition creation, a cold start is used to allocate and
initialize partition objects; whereas a warm start, which
reinitializes but does not allocate objects is used at partition
reinitialization or restart. For process errors, the responses
are application-driven; the action taken is dependent on the
error type and its context. To facilitate warm restarts,

8 | Safety-Critical Software Development for Integrated Modular Avionics

VxWorks 653 supports the use of persistent data types that
provide for preservation of critical data during the warm start
operation. This simplifies the operation and provides a
mechanism to increase the speed of startup in such situations.

Tools for Safety-Critical Systems Development

Although RTOS run-time functionality is a major consider-
ation, a discussion of IMA application development would be
incomplete without reference to development and debug-
ging tools. The quality of development and debugging tools
can have a dramatic effect on development time scales. Tools
designed for federated application development may not be
suited to IMA development, as they need to support IMA
models and scheduling modes.

Wind River’s VxWorks 653 Platform provides an integrated
development environment (IDE) with the Eclipse-based13
Wind River Workbench development suite14. This state-of-
the-art environment includes project configuration, code
browsing and build, VxWorks 653 Simulator and target
debugging, and the Wind River System Viewer analyzer.
Figure 8 shows Workbench debugging an application running
in an ARINC partition. In addition to capabilities provided by
Wind River, Eclipse plug-ins for open source and partner
tools can further extend and customize the environment.

The dynamic visualization capabilities are a real benefit to an
application developer because they provide graphical
feedback on the behavior of ARINC, POSIX, and VxWorks
applications; interactions between partitions; and the
operations of the HMS. Workbench can be used to browse,
navigate, and comprehend Ada, ARINC, POSIX, and VxWorks
applications. Wind River System Viewer is partition-aware,
and can display ARINC processes, POSIX threads, and

VxWorks tasks. It can be invaluable in displaying the internal
behavior of an application, as shown by the interprocess
communication between ARINC processes through ARINC
queuing ports in Figure 9.

It is important for the ARINC application developer to not
only visualize the behavior within an individual ARINC
partition but to view application operation in the certifiable
environment as well as interpartition communication through
ARINC ports and channels. This is achieved through the use of
CPU time usage monitoring, memory usage monitoring, and
port-monitoring tools built into the RTOS and certified as part
of the VxWorks 653 run-time system. These RTOS monitors are
then coupled with DO-178B-qualified host tools for display
and logging of the data in the test for credit environment. The
monitors and tools provide unprecedented levels of insight
into the operation of the system from development environ-
ment through final certified flight configuration.

Security Considerations for Networked IMA Systems

Security is now becoming a greater consideration in avionics
systems (see discussion by Tingey & Parkinson15). Security at
the aircraft level can be achieved through the use of firewalls
that restrict interactions between different types of subsys-
tems and separate flight systems from OEM systems and
airline systems16. However, with the advent of IMA, there is a
drive to increase—in a certifiable manner—the networking
connectivity within these domains. This goal presents some
interesting design challenges.

TCP/IP and related networking protocols require consider-
able effort to certify, and systems designers have to achieve
a balance between functionality and the suitability for
certification. In particular, DO-178B Level A certification of a
full TCP/IP stack is rather onerous. Some have advocated the
use of proprietary implementations utilizing a slave processor
to implement the network stack for the master processor.

Figure 8: Wind River Workbench Showing VxWorks 653 Partition Debugging

Figure 9: Wind River System Viewer Showing ARINC Partition Behavior

9 | Safety-Critical Software Development for Integrated Modular Avionics

However, this custom configuration uses additional hardware
and restricts software portability. Since this defeats two of
the goals of IMA outlined earlier, it can only be viewed as a
retrograde step. Wind River’s approach is to provide an
optional certifiable network stack starting with VxWorks 653
version 2.2 which implements UDP/IPv4 capabilities and is
designed for certification to DO-178B Level A. This provides a
level of functionality most customers require while still
providing for extensibility to add other protocol layers such
as IPv6 at a later time.

There are also security implications at the core module level,
which are worth highlighting. For example, application
partitions run in the processor’s user mode are unable to
execute privileged processor instructions. In addition, if the
partition OS is unable to service an APEX call on behalf of an
application, it is passed to the module OS for validation prior
to execution. Types of validation include: address validation
for the memory range within view of the partition; boundary
checks; module OS object access rights; and data structure
integrity/consistency checking. VxWorks 653 also provides a
scalable system-call privilege mechanism, whereby one
partition can have more authority than others and provides a
great foundation to meet the requirements of ISO-1540817
(see the related white paper from Wind River18). There are
also security restrictions in relation to the HMS; for example,
only a privileged partition acting as a mode manager for the
system may request an ARINC schedule change. Each of
these techniques contributes to increased security.

Safety Considerations for IMA Systems

Although the certification of IMA systems is a relatively new
endeavor, many aspects build on the methods used in the
certification of existing federated systems to various certifi-
cation standards19 & 20. For example, the concept of reusable
software components with DO-178B certification evidence in
a safety-critical application is well-documented21 and has
been applied successfully to VxWorks certification in a
federated application on an FAA program22.

The decoupling of the module OS and partitions in VxWorks
653 through the use of spatial partitioning enables this
concept to be extended further. Now, a VxWorks 5.x applica-
tion that has been previously certified to DO-178B Level C
can be used in a separate partition on the same IMA platform
as a new DO-178B Level A application, without the Level C
application needing to be recertified to Level A. This
technique can also be applied to I/O drivers and networking
stacks (such as TCP/IP). These are placed into a separate
VxWorks 653 I/O partition that is isolated from both the
module OS and application partitions. Communication with
application partitions is achieved through the use of ARINC
ports, and interaction with the module OS is restricted to
supervisor-mode driver routines. This prevents uncertified
code from affecting the correct operation of the module OS
or application partitions (see Figure 10).

Partition 1 Module OS Partition 2

Event

Source
Queuing Port

App 2

External I/O Device
(Such as AFDX)

Event

External I/O Device
(Polled Only)

App 3

Blackboard

I/O
Driver

Destination Sampling
Pseudo-Port

Source
Sampling Port

I/O
Driver

App 4

App 1

Buffer

Destination
Queuing Port

Figure 10: VxWorks 653 Device-Driver Model

Summary

The avionics industry is in the midst of major shift toward IMA,
even though the continued evolution of IMA architectures and
standards presents challenges for standards organizations,
OEMs, and commercial vendors alike.

Wind River provides an integrated device software platform.
Wind River’s VxWorks 653 Platform brings together a
standards-complaint COTS RTOS and all of the tools needed
to successfully develop safety-critical IMA applications. The
platform not only enhances developer productivity, it makes
sure that the complexity and effort involved in certification
does not impinge on developers.

In addition, the heterogeneous support for ARINC 653, Ada,
POSIX, and VxWorks applications in an IMA environment
facilitates maximum software reuse and porting of existing
federated applications to VxWorks 653.

References
1 DO-255, “Requirements Specification for Avionics Computer Resource

(ACR).” www.rtca.org
2 ARINC Specification 653, “Avionics Application Software Standard

Interface,” January 1, 1997. www.arinc.com
3 Wind River VxWorks 653 Platform product page. www.windriver.com/

products/platforms/safety_critical/
4 Wind River, ACT, and Smiths Aerospace C-130AMP press release.

www.windriver.com/news/press/pr.html?ID=296
5 Smiths Aerospace Boeing 7E7 Dreamliner Common Core System.

www.windriver.com/customers/customer-success/aerospace-defense/
smiths787.html

6 EADS/CASA. www.windriver.com/news/press/pr.html?ID=201
7 John Rushby, DOT/FAA/AR-99/58, “Partitioning in Avionics Architectures:

Requirements, Mechanisms and Assurance,” March 2000
8 ARINC Specification 653-2, “Avionics Application Software Standard

Interface,” December 1, 2005. www.arinc.com
9 POSIX Specification, ANSI/IEEE POSIX 1003.1-1995; ISO/IEC standard

9945–1:1996
10 Y. C. (Bob) Yeh, “Design Considerations in Boeing 777 Fly-by-Wire

Computers.” Third IEEE International High-Assurance Systems Engineering
Symposium, 1998. http://doi.ieeecomputersociety.org/10.1109/
HASE.1998.731596

11 P. Parkinson & F. Gasperoni, “High Integrity Systems Development for
Integrated Modular Avionics Using VxWorks and GNAT.” 7th International
Conference on Reliable Software Technologies, Ada Europe, 2002.
http://link.springer.de/link/service/series/0558/bibs/2361/23610163.htm

12 DO-297, “Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations.” www.rtca.org

13 Eclipse Consortium. www.eclipse.org
14 Wind River Workbench product page. www.windriver.com/products/

development_suite
15 P. Tingey & P. Parkinson, “Avionics Security.” Defense Procurement Analysis,

Summer 2003
16 Jean Paul Moreaux, EADS-Airbus, “Evolution of Future Aircraft Data

Communications.” NASA Workshop on Integrated CNS Technologies, May
2001. http://spacecom.grc.nasa.gov/icnsconf/docs/2001/CNS01_Session_
F3-Moreaux.pdf

17 ISO/IEC 15408: 1999, Information Technology—Security Techniques—
Evaluation Criteria for IT Security. www.iso.org

18 G. Kuhn, “VxWorks Secure Architecture.” Technical paper, Wind River
19 DO-178B, “Software Considerations in Airborne Systems and Equipment

Certification.” www.rtca.org
20 “Safety Management Requirements for Defense Systems,” Parts 1 & 2.

Interim Defence Standard 00-56, Issue 3, December 17, 2004, UK Ministry of
Defense. www.dstan.mod.uk/

21 FAA Draft Notice, N8110 RSC. www.faa.gov
22 Raytheon WAAS Customer Success Story. www.windriver.com/news/press/

pr.html?ID=393

About the Authors

Paul Parkinson is a Senior Systems Architect with Wind River
in the UK, where he works with Aerospace & Defense
customers. Paul’s professional interests include Integrated
Modular Avionics and Intelligence Surveillance Target
Acquisition and Reconnaissance Systems (ISTAR). Paul blogs
on A&D industry issues at http://blogs.windriver.com/
parkinson.

Larry Kinnan is a Senior Engineering Specialist for Aerospace
& Defense with Wind River in North America. He has respon-
sibility for ARINC 653 solutions and experience with numer-
ous aerospace programs such as the 767 Tanker, Boeing 787,
C130-AMP, and other commercial and military aircraft. Prior
to joining Wind River, Larry was employed in the medical
device design and development community where he was
involved in safety-critical device design, development, and
deployment. Larry’s personal interests range from model
rocketry, general aviation, and commercial space flight.

About Wind River

Wind River is the global leader in Device Software Optimiza-
tion (DSO). Wind River enables companies to develop, run,
and manage device software faster, better, at lower cost, and
more reliably. Our platforms are preintegrated, fully stan-
dardized, enterprise-wide development solutions. They
reduce effort, cost, and risk and optimize quality and
reliability at all phases of the device software development
process, from concept to deployed product.

Founded in 1981, Wind River is headquartered in Alameda,
California, with operations worldwide. To learn more, visit
www.windriver.com or call 800-872-4977.

Wind River is the global leader in Device Software Optimization (DSO). We enable companies to develop,
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

© 2007 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc.
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Rev. 11/2007

